

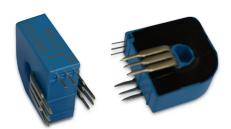
DATA SHEET Hall Effect Current Sensor

PN: CHB D15D25

IPN=25/50A

Feature

- Closed- loop (compensated) current transducer
- Supply voltage: DC $\pm 12 \sim 15 \text{ V}$
- Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.


Advantages

- High accuracy
- Easy installation
- Low temperature drift
- Optimized response time
- Low power consumption
- High immunity to external interference

Applications

- The application of induction cooker
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Inverter applications

- Very good linearity
- Can be customized

Electrical data: (Ta=25°C, Vc=±15VDC)			
Ref Parmeter	CHB25D15D25	CHB50 D15D25	
Rated input Ipn(A)	25	50	
Measuring range Ip(A)	0 ~ ±50	0~±100	
Turns ratio Np/NS (T)	1:1000	1:2000	
Output current rms IS(mA)	±25*IP/IPN	±25*IP/IPN	
Secondary coil resistance RS (Ω)	30	40	
Inside resistance RM (Ω)	[(VC-2.0V)/(IS*0.001)]-RS		
Supply voltage VC(V)	(±12 ~ ±15) ±5%		
Accuracy XG(%)	@IPN,T=25°C <±0.5		
Offset current IOE(mA)	@IP=0,T=25°C <±0.2		
Temperature variation of IOE IOT(mA/°C)	@IP=0,-40 \sim +85°C $< \pm 0.5$		
Linearity error $\varepsilon r(\%FS)$	< 0.1		
Di/dt accurately followed (A/μs)	> 50		



Cheemi Technology Co., Ltd

Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China. Cheemi Technology Co., Ltd

Response time tra(μs)	@90% of IPN	< 1.0
Power consumption IC(mA)		15+Is
Bandwidth BW(KHZ)	@-3dB,IPN	DC-100
Insulation voltage Vd(KV)	@50/60Hz, 1min,AC	4.0

General data:		
Parameter	Value	
Operating temperature TA(°C)	-40 ∼ +85	
Storage temperature TS(°C)	- 55∼ +125	
Mass M(g)	10	
Plastic material	PBT G30/G15, UL94- V0;	
	IEC60950-1:2001	
Standards	EN50178:1998	
	SJ20790-2000	

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- Custom design is available for the different rated input current and the output voltage.
- The dynamic performance is the best when the primary hole if fully filled with.
- The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

